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Abstract

This paper investigates the large deformations of an extended ¯uid-®lled cylindrical membrane. The static case and

the behaviour of the membrane rotating at a constant angular velocity are both considered. A detailed experimental

analysis was carried out involving di�erent geometries, and initial axial forces and the in¯uence of the axial force and

the ¯uid volume were investigated. An apparatus was developed to support vertically the extended cylindrical mem-

brane while it is ®lled with liquid. The membrane used in these experiments is composed of an isotropic, homogeneous

and elastic rubber, which is modelled as a neo-Hookean incompressible material, described by a single elastic constant.

This constant was obtained by comparing the experimental and numerical solutions for the membrane under traction.

The di�erential equilibrium equations for this speci®c problem and material were derived and solved by the shooting

method. When the extended membrane was ®lled with liquid, it was observed that the height of liquid increased initially

as the volume of liquid inside the membrane increased until a certain critical height was reached after which it remained

constant or decreased slightly with increasing volume, up to the moment when the membrane lost its stability into a

non-symmetric mode. These experimental results are, as shown in the paper, in satisfactory agreement with the the-

ory. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The pioneering work of Green and Adkins (1960) on non-linear elasticity set up the basis for the analysis
of membranes under large deformations. Since then many important papers have been published in this
®eld, most of which deal with the equilibrium and stability of cylindrical and spherical membranes under
uniform pressure loading or loads acting along the boundaries (Corneliussen and Shield, 1961; Alexander,
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1971; Haughton and Ogden, 1978; Ratner, 1983; Li and Steigmann, 1993; Haseganu and Steigmann, 1994;
Chen, 1995). It should be pointed out that the number of experimental contributions to this class of
problems is small compared with the theoretical and numerical ones. Among the experimental investiga-
tions in this ®eld, the publications of Green and Adkins (1960), Alexander (1971) and Pamplona and
Bevilacqua (1992) should be mentioned.

The analysis of large deformations of ¯uid-®lled membranes is not so popular; nevertheless, there are
some important publications such as the ones by Yu and Valanis (1970) and Boyer and Gutkowski (1970)
and, more recently, the work of Haughton (1996). The linear, small deformation analysis, of ¯uid-®lled
membranes is more common in literature (Ohyama et al., 1989; Zhao, 1995). Nonetheless, ¯uid-®lled
membranes are found in several engineering ®elds. Of particular importance is the recent interest in the use
of membranes as containers for the storage and transportation of ¯uids (Isaacson, 1987) and also as a
barrier for wave attenuation in severe environment (Zhao, 1995; Williams, 1996). Also, the understanding
of the static and dynamic behaviour of ¯uid-®lled membranes is important in biology and bioengineering,
since ¯uid-®lled membranes of various geometries are found in all living organisms (Evans and Skalak,
1981; Secomb and Gross, 1983; Pamplona and Calladine, 1993). These structures are load adaptive, as they
change their geometry to accommodate external loads with the minimum variation in stress levels, and
therefore, may be an e�cient engineering solution in many practical ®elds. In most of these applications, the
non-linearities of deformation and material response are very important. In this work, we investigate the
non-linear behaviour of extended ¯uid-®lled cylindrical membranes suitably supported, both theoretically
and experimentally. The static case and the behaviour of the membrane rotating at a constant angular
velocity are both considered. In the theoretical formulation of the problem, the membrane is considered to
be incompressible, homogeneous, isotropic and neo-Hookean when subjected to large deformations. This is
in agreement with the physical characteristics of the rubber membranes used in the experimental investi-
gation. In the experimental analysis, several geometries and loading cases were investigated, and these
results were compared with the theoretical results obtained by solving the non-linear equilibrium equation
by the so-called shooting method, using the Runge±Kutta and Newton±Raphson algorithms.

The experimental and theoretical results compare well with each other and show some interesting fea-
tures. Di�erent traction forces acting on cylindrical membranes with the same dimensions exhibit a critical
volume, or liquid height, after which the height of the liquid maintains itself constant or decreases slightly
with increasing volume. Increasing the amount of ¯uid still further, there is another critical volume at which
the membrane loses its axisymmetrical shape.

2. Problem formulation

Throughout this paper, a homogeneous, isotropic, hyperelastic cylindrical membrane of initial radius A,
length L�0, and constant initial thickness H � is considered. Henceforth, a superposed star denotes a di-
mensional quantity. In the deformed con®guration, both ends are ®xed to two circular rigid rings also of
radius A and separated by a distance l�0. The membrane is ®lled with an inviscid and incompressible ¯uid of
speci®c weight c� to a height l�w The co-ordinates of a typical point Po, on the middle surface of the un-
deformed membrane, are R� and Z�. Since the membrane is cylindrical, R� is constant and equal to A. The
co-ordinates of the same typical point, P, in the deformed con®guration are denoted by r� and z�. Since only
axisymmetric deformations are considered, all variables are independent of the circumferencial co-ordinate.
The deformed and undeformed thickness of the membrane are h� and H �, respectively, and s� is the arc
length along a meridian of the deformed membrane. The co-ordinate Z� is taken as the independent
variable, in such a way that all deformed variables are a function of Z�. The relevant geometrical para-
meters are shown in Fig. 1.
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For axially symmetric problems, the extension ratios in the principal directions, k1, k2 and k3, are

k1 � r�

A
; k2 � ds�

dZ�
�

��������������������������
�r��02 � �z��02

q
; k3 � h�

H �
; �1�

where � �0 are derivatives with respect to Z�.

2.1. Boundary conditions

The boundary conditions at the edges of the cylinder are

at Z� � 0; r� � A and z� � 0; �2�

at Z� � L�0; r� � A and z� � l�0: �3�

2.2. Equilibrium equations

The equilibrium equations for axially symmetric membranes along the tangent and normal directions are
given, respectively, by (Green and Adkins, 1960)

d

ds�
�T �1 r�� � T �2

dr�

ds�
; �4�

K�1 T �1 � K�2 T �2 � p�: �5�
Here, T �2 and T �1 are the meridional and circumferential stresses, respectively, and K�2 and K�1 are the

associated radii of curvature; p� is the hydrostatic pressure loading normal to the deformed middle surface
of the membrane plus the action of the angular velocity. The pressure p� is considered to be positive when
acting in the outward direction and can be written as

Fig. 1. Fluid-®lled cylindrical membrane: (a) undeformed and (b) deformed con®guration.
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p� � c��z� ÿ l�w� �
c�

2g
x2r2 for z�6 l�w; �6�

p� � 0 for z� > l�w:

Here, c� is the speci®c weight of the liquid, g, the gravitational acceleration, x, the angular velocity and l�w,
the height of the liquid.

The principal radii of curvature, K�1 and K�2 ; can be obtained from the following relations:

K�1 � ÿ
d2r�

ds�2���������������������
1ÿ dr�

ds�
ÿ �2

q ; �7�

r�K�2 �
��������������������������
1ÿ dr�

ds�

� �2
s

; �8�

where ds� � k2dZ�.
The meridional and circumferential stresses can be written in terms of the principal stretches as

T �2 � h�k1W �
1 ; �9�

T �1 � h�k2W �
2 : �10�

Here, W � is the constitutive relation of the membraneÕs material and W �
1 and W �

2 are the derivatives of W �

with respect to k1 and k2.
It is now assumed that the cylindrical membrane is made of a neo-Hookean incompressible material,

whose strain energy density function is given by

W � � C1�k2
1 � k2

2 � k2
3 ÿ 3�; �11�

where C1 is the material elastic constant (the classical shear modulus). This equation provides a simple but
realistic model for a rubber-elastic type material. As shown by Treolar (1975), statistical mechanical cal-
culations on the con®gurations of long molecular chains lead precisely to equations of the type (11).

Using these relations, the di�erential equations (4) and (5) can be rewritten as

k02W22 � k01 W21

�
ÿ W2

k1

�
� r0

rk2

k2W2� ÿ k1W1� � 0 ; �12�

k2W2

r00z0 ÿ r0z00���������������������
�r02 � z02�3

q ÿ k1W1z0

r
���������������
r02 � z02
p � p � 0: �13�

The above variables without superscript (�) are in dimensionless form, obtained from the division of the
associated dimensional quantities by the initial membraneÕs radius, A. The non-dimensional pressure, p, is
given by

p � c�A2

2C1H �
�z
�
ÿ lw� � Ax2r2

2g

�
: �14�

The non-dimensional boundary conditions are:

z�0� � 0; r�0� � 1; �15�

z�L0� � l0; r�L0� � 1: �16�
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2.3. Numerical solution

The problem described by Eqs. (12) and (13) and boundary conditions (15) and (16) is a fourth-order
non-linear two point boundary value problem with two speci®ed boundary conditions at each boundary.

In order to obtain the numerical solution of the problem, system (12) and (13) is ®rst transformed into
the following set of ®rst order di�erential equations:

z0 � u; �17�
r0 � v; �18�
z00 � u0 � �Fr0 � Gz0�=�r02 � z02�2; �19�
r00 � v0 � �Fz0 ÿ Gr0�=�r02 � z02�2; �20�

where u and v are auxiliary variables and

F � k1

W22

k01
W2

k1

� ��
ÿ r0

rk2

k2W2� ÿ k1W1�
�
; �21�

G � k2
2

W2

W1

z0

k2

�
ÿ prk2

�
: �22�

The numerical solution of this problem is performed here by the shooting method (Keller, 1968; Press
et al. 1986), which has been successfully used for the numerical solution of non-linear boundary value
problems (Krayterman, 1990; Pamplona and Bevilacqua, 1992; Dos Anjos and Goncßalves, 1996). This
method reduces the solution of a boundary value problem to the iterative solution of an initial value
problem.

To de®ne the initial value problem, the following set of initial conditions are prescribed at Z � 0:

z�0� � 0; r�0� � 1; u�0� � ~u; v�0� � ~v; �23�
where ~u and ~v are the unknown.

This approach involves a trial-and-error procedure. At the starting point, values are assumed for ~u and ~v,
and then the ordinary di�erential equations are solved by the fourth-order Runge±Kutta integration
scheme, arriving at the other boundary. Unless the computed solution agrees with the known boundary
conditions at the other end of the membrane �z�L0� � l0; r�L0� � 1�, the initial unknown conditions ~u and ~v
are adjusted using the Newton±Raphson method, and the process is repeated until the assumed initial
conditions yield, within speci®ed tolerances, a solution that agrees with the known boundary conditions at
the end of the integration interval.

3. Experimental analysis

Two pairs of aluminium rings were fabricated to hold the two edges of the cylindrical membrane, as
shown in Fig. 2a. These two rings are attached to the metal frame shown in Fig. 2b in such a way that the
cylindrical membrane can be stretched in the axial direction, as seen in Fig. 3. The membrane is ®lled with
water through the upper hollow ring. The two rings are connected by a shaft, which can be rotated as a
rigid body.

The cylindrical membrane used in these experiments is an isotropic, homogeneous rubber membrane of
undeformed radius A � 1:62 cm and thickness H � � 0:005 cm. The elastic material constants were obtained
comparing the experimental and numerical solutions for the membrane under traction. Considering the
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material to be neo-Hookean, the material constant is found to be C1 � 2:424� 105 Pa. The membrane is
®lled with water, so the speci®c weight c� � 0:01 N/cm3.

A detailed parametric experimental analysis is conducted for di�erent initial membrane lengths, L�0,
initial tractions and liquid heights. Each experiment was repeated several times to check the results, and
they proved to be perfectly reproducible.

3.1. Static analysis

First, for a given value of L�0, the membrane was stretched up to a desired length l�0 and then ®lled slowly
with water and the relation between the height of water, l�w, and the associated volume, V �, was measured.
The results for L�0 � 11:6 cm and L�0 � 16:6 cm are shown in Figs. 4 and 5, respectively. As one can observe
from both ®gures, for each value of l�0 �l�0 � 36:6; 41:6; 46:6; and 51:6 cm�; the height of the liquid in-
creases as the volume increases and asymptotically tends to a maximum height. At these points, the ad-
dition of more water causes increased symmetric deformations but the liquid height and consequently the
hydrostatic pressure remains practically constant up to a critical volume where the axisymmetric response
becomes unstable and the membrane assumes an asymmetric equilibrium con®guration. Comparing the
results shown in Figs. 4 and 5, one can conclude that the relation between l�w and V � as well as the maximum
height are a function of the ratio of the stretched height of the tube to its original length, D2 � l�0=L�0. It
should be pointed out that the overall extension ratio D2 is not actually equal to the local value of extension
ratio k2 because, as shown in Fig. 3, conditions along the tube are not uniform. For relatively low values of
the extension ratio, the response is practically the same, but for large values of D2 � l�0=L�0, the maximum

Fig. 2. Experimental apparatus.

Fig. 3. Sequence of equilibrium con®gurations. L�0 � 11:6 cm; l�0 � 51:6 cm. Volume of water varying from 0 to 480 ml at every 30 ml.
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height increases as seen in Fig. 4 for l�0 � 46:6 cm and l�0 � 51:6 cm. During the experiments it was observed
that this phenomenon could not be observed in membranes of initial length 5.6 cm or less, no matter what
its ®nal stretched length is. In these cases, the membranes is ®lled up with water before a maximum height
(or pressure) is reached. This is just because the height of the apparatus (water column) is not large enough
to generate su�cient pressure to push out a bulb at the bottom of the tube. It seems that the overall be-
haviour for a given initial stretch does not depend on the absolute height of the tube, provided that height is
su�cient to generate enough water pressure.

A typical sequence of equilibrium con®gurations is illustrated in Fig. 3. These photographs are for
L�0 � 11:6 cm, l�0 � 51:6 cm and for increasing volumes of water, ranging from 0 to 480 ml, at every 30 ml.

Fig. 4. Variation of the liquid height, lw, as a function of the liquid volume, V �. L�0 � 11:6 cm (static loading: experimental results).

Fig. 5. Variation of the liquid height, lw, as a function of the liquid volume, V �. L�0 � 16:6 cm (static loading: experimental results).

Fig. 6. Variation of the liquid height, lw, as a function of the liquid volume, V �. L�0 � 11:6 cm. Membrane rotating at a constant angular

velocity, x � 40 rad/s (experimental results).
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3.2. Dynamic analysis

Now the behaviour of the liquid-®lled membrane rotating at a constant angular velocity x is analysed.
The elastic liquid-®lled membrane will present now an equilibrium con®guration due to the combination of
the gravitational ®eld and the ¯uid centrifugal forces. The experiments were performed with a constant
speed x � 40 rad/s, which is in a range where one expects that both e�ects have a similar magnitude. When
the apparatus is rotating, the free surface of the ¯uid adopts a parabolic pro®le. This small di�erence is not
considered in the calculations, since the free surface is always a rather narrow part of the tube. The results
are presented in Figs. 6 and 7, using the same geometries analysed previously. In this case, the response is

Fig. 7. Variation of the liquid height, lw, as a function of the liquid volume, V �. L�0 � 16:6 cm. Membrane rotating at a constant angular

velocity, x � 40 rad/s (experimental results).

Fig. 8. Experimental analysis: comparision between static and dynamic results, L�0 � 11:6 cm:
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slightly di�erent from the static case. First, the liquid height increases as the liquid volume increases but
after reaching a maximum value, it decreases slowly as the volume increases. That is, after this limit point,
the addition of more liquid results in a decrease in the hydrostatic pressure. Here again, a loss of stability of
the symmetric con®guration into a non-symmetric mode was observed. One can observe that the initial
stretching has a similar in¯uence on the response as for the static case.

A comparison between the static and dynamic response for each membrane geometry is shown in Figs. 8
and 9 for L�0 � 11:6 cm and L�0 � 16:6 cm, respectively. In all eight ®gures it is possible to observe that the
relation between l�w and V � is practically the same along the initial ascending branch, but the di�erence
between the two curves increases as the liquid volume increases, showing the marked di�erence in be-
haviour for large values of V �. This di�erence is more prominent for large values of D2 as observed in Fig.
8c and d.

4. Numerical results

The same problem analysed experimentally were now solved using the formulation and numerical
methodology presented in Section 2. The numerical results were obtained by assuming a height of water

Fig. 9. Experimental analysis: comparison between static and dynamic results, L�0 � 16:6 cm:
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and calculating, after convergence of the numerical process, the related volume. During the analysis, it was
veri®ed that it was more convenient to control numerically the height of water than its volume.

The results of the static analysis for L�0 � 11:6 cm and L�0 � 16:6 cm are shown in Figs. 10 and 11, re-
spectively, where again the liquid height, l�w, is plotted as a function of the liquid volume, V �, for di�erent

Fig. 12. Variation of the liquid height, lw, as a function of the liquid volume, V �. L�0 � 11:6 cm. Membrane rotating at a constant

angular velocity x � 40 rad/s (numerical resuslts).

Fig. 10. Varaition of the liquid height, lw, as a function of the liquid volume, V � and L�0 � 11:6 cm (static loading: numerical results).

Fig. 11. Varaition of the liquid height, lw as a function of the liquid volume, V �. L�0 � 16:6 cm (static loading: numerical results).
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values of l�0. It is observed that, as the volume increases gradually, the height of water increases until a limit
value is reached, after which the volume can increase continuously without any perceptible increase in the
related height of water. In all the results presented here, the in¯uence of the initial stress state, expressed by
the overall extension ratio D2 � l�0=L�0, was found to be very small, with all the curves almost the same.

The numerical results for the membrane rotating at a constant angular velocity are shown in Fig. 12 for
L�0 � 11:6 cm. Here it is possible to see that the height of water increases with the volume up to a maximum
value ± but it was not possible to obtain numerically the descending branch of the curve since the numerical
algorithm, as implemented here, is not capable of passing a limit point. The comparison between the nu-
merically obtained values for the static and dynamic cases is shown in Fig. 13 for L�0 � 11:6 cm where again
it is observed that for the same volume of water, the height of water is lower for the rotating tube than for
the static case. This agrees with the experimental results shown previously.

4.1. Comparison between experimental and numerical results

The comparison between the experimental and numerical results for the static case is shown in Figs. 14
and 15. There is an excellent agreement between theory and experiment for low values of the extension ratio

Fig. 13. Numerical analysis: comparision between static and dynamic results, L�0 � 11:6 cm:
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D2 � l�0=L�0. On the other hand, for values of D2 higher than four there is, as shown in Fig. 14c and d, a
noticeable di�erence between the numerical and experimental curves. For the tube with initial length of 16.6
cm, Fig. 15, since the values of D2 are relatively small, the experimental and numerical results are in very
good agreement. We believe that for large values of D2 it is possible to improve the correlation between the
numerical and experimental results by changing the constitutive relation of the material. In a previous study
using rubber membranes, Pamplona and Bevilacqua (1992) observed that for large extension ratios, the
Mooney±Rivlin constitutive model gives better results when compared with the experimental ones than the
neo-Hookean model used in this paper. The comparison between the experimental and numerical results
for the rotating membrane are not so good, but even in this case the numerical results present the same
qualitative behaviour, as illustrated in Fig. 16.

5. Discussion and conclusion

In this work, the ®nite deformations of an isotropic circular cylindrical membrane subjected to a ®nite
extension and gradually ®lled with liquid were investigated both theoretically and experimentally.

Fig. 14. Comparision between experimental and numerical results: static case. L�0 � 11:6 cm.
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Theoretical and, particularly, experimental investigations of membranes under variable pressure are
scarce in the literature. Nonetheless, this is a problem of importance in many engineering ®elds including
some relevant biomedical problems. The agreement of the experimental and numerical results, especially for
relatively low values of the extension ratio D2, is rather encouraging and indicates that the present for-
mulation can satisfactorily model the deformation ®eld under consideration. Also the experimental results
presented here, covering a large collection of cases, can be used as a benchmark for future theoretical and
numerical works in this area.

Two important phenomena were observed during the experiments: (a) the existence, for certain extended
membranes, of a maximum hydrostatic pressure (or liquid height) and (b) the loss of stability of the axi-
symmetric deformed con®guration at a critical liquid volume, both in the static and dynamic cases. As
observed experimentally, as water is added, the membrane deforms symmetrically and the liquid height
increases continuously until a maximum height and, consequently, hydrostatic pressure is reached. At this
point, the addition of more liquid causes increased symmetric deformation near the base of the tube while
the liquid height remains practically constant. This maximum height is a function of the ratio between the
initial and ®nal length of the membrane, D2. For relatively low values of D2, this critical height is practically
constant but increases for large values of D2.

Fig. 15. Comparision between experimental and numerical reuslts: static case. L�0 � 16:6 cm.
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Finally, the volume of the internal ¯uid reaches a critical value causing a bifurcation into an asymmetric
mode. After the bifurcation a major part of the liquid passes on one side of the symmetry axis with a sudden
decrease in the hydrostatic pressure.

Since the observed instability mode is not rotationally symmetric, the present numerical formulation
allows no prediction of when a critical con®guration will occur. This study is a natural extension of the
present work and will be performed in the near future.
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