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Abstract

This paper investigates the large deformations of an extended fluid-filled cylindrical membrane. The static case and
the behaviour of the membrane rotating at a constant angular velocity are both considered. A detailed experimental
analysis was carried out involving different geometries, and initial axial forces and the influence of the axial force and
the fluid volume were investigated. An apparatus was developed to support vertically the extended cylindrical mem-
brane while it is filled with liquid. The membrane used in these experiments is composed of an isotropic, homogeneous
and elastic rubber, which is modelled as a neo-Hookean incompressible material, described by a single elastic constant.
This constant was obtained by comparing the experimental and numerical solutions for the membrane under traction.
The differential equilibrium equations for this specific problem and material were derived and solved by the shooting
method. When the extended membrane was filled with liquid, it was observed that the height of liquid increased initially
as the volume of liquid inside the membrane increased until a certain critical height was reached after which it remained
constant or decreased slightly with increasing volume, up to the moment when the membrane lost its stability into a
non-symmetric mode. These experimental results are, as shown in the paper, in satisfactory agreement with the the-
ory. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The pioneering work of Green and Adkins (1960) on non-linear elasticity set up the basis for the analysis
of membranes under large deformations. Since then many important papers have been published in this
field, most of which deal with the equilibrium and stability of cylindrical and spherical membranes under
uniform pressure loading or loads acting along the boundaries (Corneliussen and Shield, 1961; Alexander,

*Corresponding author. Tel.: +55-21-529-9346; fax: +55-21-511-1546.
E-mail addresses: djenane@civ.puc-rio.br (D. Pamplona), paulo@civ.puc-rio.br (P. Gongalves).
! Also Corresponding author. Civil Engineering Department, Catholic University - PUC-Rio 22453-900 Rio de Janeiro, Brazil.

0020-7683/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(00)00151-7



2034 D. Pamplona et al. | International Journal of Solids and Structures 38 (2001) 2033-2047

1971; Haughton and Ogden, 1978; Ratner, 1983; Li and Steigmann, 1993; Haseganu and Steigmann, 1994;
Chen, 1995). It should be pointed out that the number of experimental contributions to this class of
problems is small compared with the theoretical and numerical ones. Among the experimental investiga-
tions in this field, the publications of Green and Adkins (1960), Alexander (1971) and Pamplona and
Bevilacqua (1992) should be mentioned.

The analysis of large deformations of fluid-filled membranes is not so popular; nevertheless, there are
some important publications such as the ones by Yu and Valanis (1970) and Boyer and Gutkowski (1970)
and, more recently, the work of Haughton (1996). The linear, small deformation analysis, of fluid-filled
membranes is more common in literature (Ohyama et al., 1989; Zhao, 1995). Nonetheless, fluid-filled
membranes are found in several engineering fields. Of particular importance is the recent interest in the use
of membranes as containers for the storage and transportation of fluids (Isaacson, 1987) and also as a
barrier for wave attenuation in severe environment (Zhao, 1995; Williams, 1996). Also, the understanding
of the static and dynamic behaviour of fluid-filled membranes is important in biology and bioengineering,
since fluid-filled membranes of various geometries are found in all living organisms (Evans and Skalak,
1981; Secomb and Gross, 1983; Pamplona and Calladine, 1993). These structures are load adaptive, as they
change their geometry to accommodate external loads with the minimum variation in stress levels, and
therefore, may be an efficient engineering solution in many practical fields. In most of these applications, the
non-linearities of deformation and material response are very important. In this work, we investigate the
non-linear behaviour of extended fluid-filled cylindrical membranes suitably supported, both theoretically
and experimentally. The static case and the behaviour of the membrane rotating at a constant angular
velocity are both considered. In the theoretical formulation of the problem, the membrane is considered to
be incompressible, homogeneous, isotropic and neo-Hookean when subjected to large deformations. This is
in agreement with the physical characteristics of the rubber membranes used in the experimental investi-
gation. In the experimental analysis, several geometries and loading cases were investigated, and these
results were compared with the theoretical results obtained by solving the non-linear equilibrium equation
by the so-called shooting method, using the Runge-Kutta and Newton—Raphson algorithms.

The experimental and theoretical results compare well with each other and show some interesting fea-
tures. Different traction forces acting on cylindrical membranes with the same dimensions exhibit a critical
volume, or liquid height, after which the height of the liquid maintains itself constant or decreases slightly
with increasing volume. Increasing the amount of fluid still further, there is another critical volume at which
the membrane loses its axisymmetrical shape.

2. Problem formulation

Throughout this paper, a homogeneous, isotropic, hyperelastic cylindrical membrane of initial radius A4,
length L;, and constant initial thickness H* is considered. Henceforth, a superposed star denotes a di-
mensional quantity. In the deformed configuration, both ends are fixed to two circular rigid rings also of
radius 4 and separated by a distance /;;. The membrane is filled with an inviscid and incompressible fluid of
specific weight y* to a height /i The co-ordinates of a typical point P,, on the middle surface of the un-
deformed membrane, are R* and Z*. Since the membrane is cylindrical, R* is constant and equal to 4. The
co-ordinates of the same typical point, P, in the deformed configuration are denoted by »* and z*. Since only
axisymmetric deformations are considered, all variables are independent of the circumferencial co-ordinate.
The deformed and undeformed thickness of the membrane are 2* and H*, respectively, and s* is the arc
length along a meridian of the deformed membrane. The co-ordinate Z* is taken as the independent
variable, in such a way that all deformed variables are a function of Z*. The relevant geometrical para-
meters are shown in Fig. 1.
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Fig. 1. Fluid-filled cylindrical membrane: (a) undeformed and (b) deformed configuration.

For axially symmetric problems, the extension ratios in the principal directions, 4;, 4, and 43, are
)vl - JVZ = T (}"*)/24—(2*)/2, 13 T (1)
H*
where () are derivatives with respect to Z*.
2.1. Boundary conditions

The boundary conditions at the edges of the cylinder are

atZ*=0, " =4 and z* =0, (2)

at Z*=L;, r =4 and z* =1[. (3)

2.2. Equilibrium equations

The equilibrium equations for axially symmetric membranes along the tangent and normal directions are
given, respectively, by (Green and Adkins, 1960)

d dr*

_ T* ) T*_ 4
o L) =Ty (4)
KT+ KTy =p. (5)

Here, T;" and T} are the meridional and circumferential stresses, respectively, and K; and K are the
associated radii of curvature; p* is the hydrostatic pressure loading normal to the deformed middle surface
of the membrane plus the action of the angular velocity. The pressure p* is considered to be positive when
acting in the outward direction and can be written as
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Here, y* is the specific weight of the liquid, g, the gravitational acceleration, w, the angular velocity and /7,
the height of the liquid.
The principal radii of curvature, K; and K; can be obtained from the following relations:

dzr*
K==, (7)
1= (&)
. dr\?
I"K2: 1_(ds*> ’ (8)

where ds* = 1,dZ*.
The meridional and circumferential stresses can be written in terms of the principal stretches as

T =W W, 9)

Ty = W, ;. (10)

Here, W* is the constitutive relation of the membrane’s material and W}* and W," are the derivatives of W*
with respect to 4; and 4.

It is now assumed that the cylindrical membrane is made of a neo-Hookean incompressible material,
whose strain energy density function is given by

W =Ci(5+ 75+ -3), (11)

where C; is the material elastic constant (the classical shear modulus). This equation provides a simple but

realistic model for a rubber-elastic type material. As shown by Treolar (1975), statistical mechanical cal-

culations on the configurations of long molecular chains lead precisely to equations of the type (11).
Using these relations, the differential equations (4) and (5) can be rewritten as

al ! W / "
IoWay 4 44 [%1—72} +L[/L2Wz—ilWl]:07 (12)
A r)uz
1ot LW
Iy 2L E = (13)

\/(7‘/2 + 212)3 V\/Vlz + 22

The above variables without superscript (*) are in dimensionless form, obtained from the division of the
associated dimensional quantities by the initial membrane’s radius, A. The non-dimensional pressure, p, is
given by

_ V*Az Aw2r2
p_2GHJ& M%F2g ‘ (14)
The non-dimensional boundary conditions are:
z(0) =0, r(0) =1, (15)

2Lo) = lo,  r(Lo) = 1. (16)
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2.3. Numerical solution

The problem described by Egs. (12) and (13) and boundary conditions (15) and (16) is a fourth-order
non-linear two point boundary value problem with two specified boundary conditions at each boundary.

In order to obtain the numerical solution of the problem, system (12) and (13) is first transformed into
the following set of first order differential equations:

Z=u (17)
¥ =, (18)
= = (B +G2) /(" + %), (19)
Y= = (F — GY)/ (" + ), (20)
where u and v are auxiliary variables and
F= vjv{’[q ‘rr;; W%—ilWﬂ}v (21)
ng{Mi—m%} (22)
W 4

The numerical solution of this problem is performed here by the shooting method (Keller, 1968; Press
et al. 1986), which has been successfully used for the numerical solution of non-linear boundary value
problems (Krayterman, 1990; Pamplona and Bevilacqua, 1992; Dos Anjos and Gongalves, 1996). This
method reduces the solution of a boundary value problem to the iterative solution of an initial value
problem.

To define the initial value problem, the following set of initial conditions are prescribed at Z = 0:

20)=0, #0)=1, u(0)=i, v(0)=3 (23)

where # and ¢ are the unknown.

This approach involves a trial-and-error procedure. At the starting point, values are assumed for # and 7,
and then the ordinary differential equations are solved by the fourth-order Runge-Kutta integration
scheme, arriving at the other boundary. Unless the computed solution agrees with the known boundary
conditions at the other end of the membrane (z(Ly) = Iy, #(Lo) = 1), the initial unknown conditions & and &
are adjusted using the Newton—-Raphson method, and the process is repeated until the assumed initial
conditions yield, within specified tolerances, a solution that agrees with the known boundary conditions at
the end of the integration interval.

3. Experimental analysis

Two pairs of aluminium rings were fabricated to hold the two edges of the cylindrical membrane, as
shown in Fig. 2a. These two rings are attached to the metal frame shown in Fig. 2b in such a way that the
cylindrical membrane can be stretched in the axial direction, as seen in Fig. 3. The membrane is filled with
water through the upper hollow ring. The two rings are connected by a shaft, which can be rotated as a
rigid body.

The cylindrical membrane used in these experiments is an isotropic, homogeneous rubber membrane of
undeformed radius 4 = 1.62 cm and thickness H#* = 0.005 cm. The elastic material constants were obtained
comparing the experimental and numerical solutions for the membrane under traction. Considering the
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(a)

Fig. 2. Experimental apparatus.

Fig. 3. Sequence of equilibrium configurations. Lj = 11.6 cm; /j; = 51.6 cm. Volume of water varying from 0 to 480 ml at every 30 ml.

material to be neo-Hookean, the material constant is found to be C; = 2.424 x 10° Pa. The membrane is
filled with water, so the specific weight y* = 0.01 N/cm?.

A detailed parametric experimental analysis is conducted for different initial membrane lengths, L,
initial tractions and liquid heights. Each experiment was repeated several times to check the results, and
they proved to be perfectly reproducible.

3.1. Static analysis

First, for a given value of L;, the membrane was stretched up to a desired length /; and then filled slowly
with water and the relation between the height of water, [, and the associated volume, V¥, was measured.
The results for Lj = 11.6 cm and L; = 16.6 cm are shown in Figs. 4 and 5, respectively. As one can observe
from both figures, for each value of /; (I; = 36.6, 41.6, 46.6, and 51.6 cm), the height of the liquid in-
creases as the volume increases and asymptotically tends to a maximum height. At these points, the ad-
dition of more water causes increased symmetric deformations but the liquid height and consequently the
hydrostatic pressure remains practically constant up to a critical volume where the axisymmetric response
becomes unstable and the membrane assumes an asymmetric equilibrium configuration. Comparing the
results shown in Figs. 4 and 5, one can conclude that the relation between 7}, and V* as well as the maximum
height are a function of the ratio of the stretched height of the tube to its original length, 4, = [ /L;. It
should be pointed out that the overall extension ratio 4, is not actually equal to the local value of extension
ratio 4, because, as shown in Fig. 3, conditions along the tube are not uniform. For relatively low values of
the extension ratio, the response is practically the same, but for large values of 4, = [;/L;, the maximum
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Fig. 4. Variation of the liquid height, /,,, as a function of the liquid volume, V*. Lj = 11.6 cm (static loading: experimental results).

3
L
=
(2]
©
T
O T T T T 1
0 50 100 150 200 250
Volume (ml)

Fig. 5. Variation of the liquid height, /,,, as a function of the liquid volume, V'*. L; = 16.6 cm (static loading: experimental results).

height increases as seen in Fig. 4 for /; = 46.6 cm and /j = 51.6 cm. During the experiments it was observed
that this phenomenon could not be observed in membranes of initial length 5.6 cm or less, no matter what
its final stretched length is. In these cases, the membranes is filled up with water before a maximum height
(or pressure) is reached. This is just because the height of the apparatus (water column) is not large enough
to generate sufficient pressure to push out a bulb at the bottom of the tube. It seems that the overall be-
haviour for a given initial stretch does not depend on the absolute height of the tube, provided that height is
sufficient to generate enough water pressure.

A typical sequence of equilibrium configurations is illustrated in Fig. 3. These photographs are for
Li =11.6 cm, /j = 51.6 cm and for increasing volumes of water, ranging from 0 to 480 ml, at every 30 ml.

Height (cm)
o

0 T T T T )
0 50 100 150 200 250

Volume (ml)

Fig. 6. Variation of the liquid height, /,, as a function of the liquid volume, V*. Lj = 11.6 cm. Membrane rotating at a constant angular
velocity, o = 40 rad/s (experimental results).
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Fig. 7. Variation of the liquid height, /, as a function of the liquid volume, V*. Lj = 16.6 cm. Membrane rotating at a constant angular
velocity, @ = 40 rad/s (experimental results).

3.2. Dynamic analysis

Now the behaviour of the liquid-filled membrane rotating at a constant angular velocity w is analysed.
The elastic liquid-filled membrane will present now an equilibrium configuration due to the combination of
the gravitational field and the fluid centrifugal forces. The experiments were performed with a constant
speed @ = 40 rad/s, which is in a range where one expects that both effects have a similar magnitude. When
the apparatus is rotating, the free surface of the fluid adopts a parabolic profile. This small difference is not
considered in the calculations, since the free surface is always a rather narrow part of the tube. The results
are presented in Figs. 6 and 7, using the same geometries analysed previously. In this case, the response is
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Fig. 8. Experimental analysis: comparision between static and dynamic results, Lj = 11.6 cm.
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Fig. 9. Experimental analysis: comparison between static and dynamic results, L = 16.6 cm.

slightly different from the static case. First, the liquid height increases as the liquid volume increases but
after reaching a maximum value, it decreases slowly as the volume increases. That is, after this limit point,
the addition of more liquid results in a decrease in the hydrostatic pressure. Here again, a loss of stability of
the symmetric configuration into a non-symmetric mode was observed. One can observe that the initial
stretching has a similar influence on the response as for the static case.

A comparison between the static and dynamic response for each membrane geometry is shown in Figs. 8
and 9 for Lj, = 11.6 cm and L§ = 16.6 cm, respectively. In all eight figures it is possible to observe that the
relation between [, and V* is practically the same along the initial ascending branch, but the difference
between the two curves increases as the liquid volume increases, showing the marked difference in be-
haviour for large values of V*. This difference is more prominent for large values of 4, as observed in Fig.
8c and d.

4. Numerical results

The same problem analysed experimentally were now solved using the formulation and numerical
methodology presented in Section 2. The numerical results were obtained by assuming a height of water
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and calculating, after convergence of the numerical process, the related volume. During the analysis, it was
verified that it was more convenient to control numerically the height of water than its volume.
The results of the static analysis for L§ = 11.6 cm and Lj = 16.6 cm are shown in Figs. 10 and 11, re-

spectively, where again the liquid height, /7, is plotted as a function of the liquid volume, V'*, for different
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Fig. 10. Varaition of the liquid height, /,, as a function of the liquid volume, V* and Lj = 11.6 cm (static loading: numerical results).

3
S
=
2
[}
T
0 T T T T 1
0 50 100 150 200 250
Volume (ml)

Fig. 11. Varaition of the liquid height, /,, as a function of the liquid volume, V'*. Lj = 16.6 cm (static loading: numerical results).
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Fig. 12. Variation of the liquid height, /,,, as a function of the liquid volume, V*. Lj = 11.6 cm. Membrane rotating at a constant
angular velocity @ = 40 rad/s (numerical resuslts).
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Fig. 13. Numerical analysis: comparision between static and dynamic results, L; = 11.6 cm.

values of /. It is observed that, as the volume increases gradually, the height of water increases until a limit
value is reached, after which the volume can increase continuously without any perceptible increase in the
related height of water. In all the results presented here, the influence of the initial stress state, expressed by
the overall extension ratio 4, = /;/L;, was found to be very small, with all the curves almost the same.

The numerical results for the membrane rotating at a constant angular velocity are shown in Fig. 12 for
L = 11.6 cm. Here it is possible to see that the height of water increases with the volume up to a maximum
value — but it was not possible to obtain numerically the descending branch of the curve since the numerical
algorithm, as implemented here, is not capable of passing a limit point. The comparison between the nu-
merically obtained values for the static and dynamic cases is shown in Fig. 13 for L; = 11.6 cm where again
it is observed that for the same volume of water, the height of water is lower for the rotating tube than for
the static case. This agrees with the experimental results shown previously.

4.1. Comparison between experimental and numerical results

The comparison between the experimental and numerical results for the static case is shown in Figs. 14
and 15. There is an excellent agreement between theory and experiment for low values of the extension ratio
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Fig. 14. Comparision between experimental and numerical results: static case. Ly = 11.6 cm.

4y = 13 /L;. On the other hand, for values of 4, higher than four there is, as shown in Fig. 14c and d, a
noticeable difference between the numerical and experimental curves. For the tube with initial length of 16.6
cm, Fig. 15, since the values of 4, are relatively small, the experimental and numerical results are in very
good agreement. We believe that for large values of 4, it is possible to improve the correlation between the
numerical and experimental results by changing the constitutive relation of the material. In a previous study
using rubber membranes, Pamplona and Bevilacqua (1992) observed that for large extension ratios, the
Mooney—Rivlin constitutive model gives better results when compared with the experimental ones than the
neo-Hookean model used in this paper. The comparison between the experimental and numerical results
for the rotating membrane are not so good, but even in this case the numerical results present the same
qualitative behaviour, as illustrated in Fig. 16.

5. Discussion and conclusion

In this work, the finite deformations of an isotropic circular cylindrical membrane subjected to a finite
extension and gradually filled with liquid were investigated both theoretically and experimentally.
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Fig. 15. Comparision between experimental and numerical reuslts: static case. Lj = 16.6 cm.

Theoretical and, particularly, experimental investigations of membranes under variable pressure are
scarce in the literature. Nonetheless, this is a problem of importance in many engineering fields including
some relevant biomedical problems. The agreement of the experimental and numerical results, especially for
relatively low values of the extension ratio 4, is rather encouraging and indicates that the present for-
mulation can satisfactorily model the deformation field under consideration. Also the experimental results
presented here, covering a large collection of cases, can be used as a benchmark for future theoretical and
numerical works in this area.

Two important phenomena were observed during the experiments: (a) the existence, for certain extended
membranes, of a maximum hydrostatic pressure (or liquid height) and (b) the loss of stability of the axi-
symmetric deformed configuration at a critical liquid volume, both in the static and dynamic cases. As
observed experimentally, as water is added, the membrane deforms symmetrically and the liquid height
increases continuously until a maximum height and, consequently, hydrostatic pressure is reached. At this
point, the addition of more liquid causes increased symmetric deformation near the base of the tube while
the liquid height remains practically constant. This maximum height is a function of the ratio between the
initial and final length of the membrane, 4,. For relatively low values of 4,, this critical height is practically
constant but increases for large values of 4,.
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Fig. 16. Comparison between experimental and numerical results: rotating membrane. L; = 11.6 cm; @ = 40 rad/s.

Finally, the volume of the internal fluid reaches a critical value causing a bifurcation into an asymmetric
mode. After the bifurcation a major part of the liquid passes on one side of the symmetry axis with a sudden
decrease in the hydrostatic pressure.

Since the observed instability mode is not rotationally symmetric, the present numerical formulation
allows no prediction of when a critical configuration will occur. This study is a natural extension of the
present work and will be performed in the near future.
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